Εμφάνιση αναρτήσεων με ετικέτα algae. Εμφάνιση όλων των αναρτήσεων
Εμφάνιση αναρτήσεων με ετικέτα algae. Εμφάνιση όλων των αναρτήσεων

Δευτέρα, 8 Απριλίου 2013

Microalgae Produce More Oil Faster for Energy, Food or Products



 --
Apr. 7, 2013 — Scientists have described technology that accelerates microalgae's ability to produce many different types of renewable oils for fuels, chemicals, foods and personal-care products within days using standard industrial fermentation.
The presentation was part of the 245th National Meeting & Exposition of the American Chemical Society (ACS) on April 7.

Walter Rakitsky, Ph.D, explained that microalgae are the original oil producers on earth, and that all of the oil-producing machinery present in higher plants resides within these single-cell organisms. Solazyme's breakthrough biotechnology platform unlocks the power of microalgae, achieving over 80 percent oil within each individual cell at commercial scale while changing the triglyceride oil paradigm by their ability to tailor the oil profiles by carbon chain and saturation. The ability to produce multiple oils in a matter of days out of one plant location using standard industrial fermentation is a game-changer. Solazyme's patented microalgae strains have become the workhorses of a growing industry focused on producing commercial quantities of microalgal oil for energy and food applications. Rakitsky is with Solazyme, Inc., of South San Francisco, Calif., one of the largest and most successful of those companies, which in 2011 supplied 100 percent microalgal-derived advanced biofuel for the first U.S. passenger jetliner flight powered by advanced biofuel.
In a keynote talk at the ACS meeting, Rakitsky described Solazyme's technology platform that enables the company to produce multiple oils from heart-healthy high-oleic oils for food to oils that are tailored to have specific performance and functionality benefits in industry, such as safer dielectric fluids and oils that are the highest-value cuts of the barrel for advanced fuels. The benefits of these oils far surpass those of other oils that are currently available today.
"For the first time in history, we have unlocked the ability to completely design and tailor oils," he said. "This breakthrough allows us to create oils optimized for everything from high-performance jet and diesel fuel to renewable chemicals to skin-care products and heart-healthy food oils. These oils could replace or enhance the properties of oils derived from the world's three dominant sources: petroleum, plants and animals."
Producing custom-tailored oils starts with optimizing the algae to produce the right kind of oil, and from there, the flexibility of the fermentation platform really comes into play. Solazyme is able to produce all of these oils in one location simply by switching out the strain of microalgae they use, Rakitsky explained. Unlike other algal oil production processes, in which algae grow in open ponds, Solazyme grows microalgae in total darkness in the same kind of fermentation vats used to produce vinegar, medicines and scores of other products. Instead of sunlight, energy for the microalgae's growth comes from low-cost, plant-based sugars. This gives the company a completely consistent, repeatable industrial process to produce tailored oil at scale.
Sugar from traditional sources such as sugarcane and corn has advantages for growing microalgae, especially their abundance and relatively low cost, Rakitsky said. The company's first fit-for-purpose commercial-scale production plant is under construction with their partner Bunge next to a sugarcane mill in Brazil. Initial production capacity will be 110,000 tons of microalgal oil annually, expanding up to 330,700 tons. In addition, the company has a production agreement with ADM in Clinton, Iowa, for 22,000 tons of oil, expandable to 110,000 tons. Ultimately, cellulosic sources of sugars from non-food plants or plant waste materials, like grasses or corn stover, may take over as those technologies reach the right scale and cost structures.
.sciencedaily.com
7/4/13
--
-
Related:

Τετάρτη, 31 Οκτωβρίου 2012

Biofuel breakthrough: Quick cook method turns algae into oil



ScienceDaily (Oct. 31, 2012) — ANN ARBOR—It looks like Mother Nature was wasting her time with a multimillion-year process to produce crude oil. Michigan Engineering researchers can "pressure-cook" algae for as little as a minute and transform an unprecedented 65 percent of the green slime into biocrude.

"We're trying to mimic the process in nature that forms crude oil with marine organisms," said Phil Savage, an Arthur F. Thurnau professor and a professor of chemical engineering at the University of Michigan.
The findings will be presented Nov. 1 at the 2012 American Institute of Chemical Engineers Annual Meeting in Pittsburgh.
Savage's ocean-going organism of choice is the green marine micro-alga of the genus Nannochloropsis.
To make their one-minute biocrude, Savage and Julia Faeth, a doctoral student in Savage's lab, filled a steel pipe connector with 1.5 milliliters of wet algae, capped it and plunged it into 1,100-degree Fahrenheit sand. The small volume ensured that the algae was heated through, but with only a minute to warm up, the algae's temperature should have just grazed the 550-degree mark before the team pulled the reactor back out.
Previously, Savage and his team heated the algae for times ranging from 10 to 90 minutes. They saw their best results, with about half of the algae converted to biocrude, after treating it for 10 to 40 minutes at 570 degrees.
Why are the one-minute results so much better? Savage and Faeth won't be sure until they have done more experiments, but they have some ideas.
"My guess is that the reactions that produce biocrude are actually must faster than previously thought," Savage said.
Faeth suggests that the fast heating might boost the biocrude by keeping unwanted reactions at bay.
"For example, the biocrude might decompose into substances that dissolve in water, and the fast heating rates might discourage that reaction," Faeth said.
The team points out that shorter reaction times mean that the reactors don't have to be as large.
"By reducing the reactor volume, the cost of building a biocrude production plant also decreases," Faeth said, though both she and Savage cautioned that they couldn't say for sure whether the new method is faster and cheaper until the process is further developed.
Current commercial makers of algae-based fuel first dry the algae and then extract the natural oil. But at over $20 per gallon, this fuel is a long way from the gas pump.
"Companies know that that approach is not economical, so they are looking at approaches for using wet algae, as are we," Savage said.
One of the advantages of the wet method is that it doesn't just extract the existing fat from the algae—it also breaks down proteins and carbohydrates. The minute method did this so successfully that the oil contained about 90 percent of the energy in the original algae.
"That result is near the upper bound of what is possible," Savage said.
Before biocrude can be fed into the existing refinery system for petroleum, it needs pre-refining to get rid of the extra oxygen and nitrogen atoms that abound in living things. The Savage lab also is developing better methods for this leg of biofuel production, breaking the record with a biocrude that was 97 percent carbon and hydrogen earlier this year. A paper on this work is currently under review.
Once producing biofuel from algae is economical, researchers estimate that an area the size of New Mexico could provide enough oil to match current U.S. petroleum consumption. And, unlike corn produced for ethanol—which already accounts for half that area—the algae won't need to occupy good farmland, thriving in brackish ponds instead.
The research, "The Effects of Heating Rate and Reaction Time on Hydrothermal Liquefaction of Microalgae," was funded by the Emerging Frontiers in Research and Innovation program of the National Science Foundation. The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.
Abstract: https://aiche.confex.com/aiche/2012/webprogram/Paper280193.html
Savage Lab: http://savageresearchlab.wordpress.com
EDITORS: Watch and link to a video about Savage's work on biofuels at http://www.youtube.com/watch?feature=player_embedded&v=dvGssEM4bLg#
-----
Biofuel breakthrough: Quick cook method turns algae into oil

Οι νεκροί Έλληνες στα μακεδονικά χώματα σάς κοιτούν με οργή

«Παριστάνετε τα "καλά παιδιά" ελπίζοντας στη στήριξη του διεθνή παράγοντα για να παραμείνετε στην εξουσία», ήταν η κατηγορία πο...